Radical scavengers protect murine lungs from endotoxin-induced hyporesponsiveness to inhaled nitric oxide.

نویسندگان

  • Yehuda Raveh
  • Fumito Ichinose
  • Pini Orbach
  • Kenneth D Bloch
  • Warren M Zapol
چکیده

BACKGROUND Sepsis is associated with an impaired pulmonary vasodilator response to inhaled nitric oxide (NO). A combination of NO and other inflammatory mediators appears to be responsible for endotoxin-induced pulmonary vascular hyporesponsiveness to inhaled NO. The authors investigated whether scavengers of reactive oxygen species could preserve inhaled NO responsiveness in endotoxin-challenged mice. METHODS The vasorelaxation to inhaled NO was studied in isolated, perfused, and ventilated lungs obtained from mice 16 h after an intraperitoneal challenge with saline or 50 mg/kg Escherichia coli lipopolysaccharide. In some mice, challenge with saline or lipopolysaccharide was followed by intraperitoneal administration of N-acetylcysteine, dimethylthiourea, EUK-8, or polyethylene glycol-conjugated catalase. RESULTS The pulmonary vasodilator response of U46619-preconstricted isolated lungs to ventilation with 0.4, 4, and 40 ppm inhaled NO in lipopolysaccharide-challenged mice was reduced to 32, 43, and 60%, respectively, of that observed in saline-challenged mice (P < 0.0001). Responsiveness to inhaled NO was partially preserved in lipopolysaccharide-challenged mice treated with a single dose of N-acetylcysteine (150 or 500 mg/kg) or 20 U/g polyethylene glycol-conjugated catalase (all P < 0.05 vs. lipopolysaccharide alone). Responsiveness to inhaled NO was fully preserved by treatment with either dimethylthiourea, EUK-8, two doses of N-acetylcysteine (150 mg/kg administered 3.5 h apart), or 100 U/g polyethylene glycol-conjugated catalase (all P < 0.01 vs. lipopolysaccharide alone). CONCLUSIONS When administered to mice concurrently with lipopolysaccharide challenge, reactive oxygen species scavengers prevent impairment of pulmonary vasodilation to inhaled NO. Therapy with scavengers of reactive oxygen species may provide a means to preserve pulmonary vasodilation to inhaled NO in sepsis-associated acute lung injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways

Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine...

متن کامل

Dose-response relationship for inhaled nitric oxide in experimental pulmonary hypertension in sheep.

We have examined the effect of inhaled nitric oxide 4-512 p.p.m. in six sheep with pulmonary hypertension induced first with hypoxia and then with 6 micrograms kg-1 of E. coli endotoxin. A similar dose-dependent reduction in pulmonary artery pressure occurred in pulmonary hypertension induced by hypoxia or endotoxin, with a maximum effect of 25-30% decrease with nitric oxide 64 p.p.m. Increasin...

متن کامل

Exhaled NO and plasma cGMP increase after endotoxin infusion in healthy volunteers.

Nitric oxide (NO) is believed to be involved in the pathophysiology of sepsis. This study evaluated the activity of the NO pathway in a human endotoxin model. At baseline and after endotoxin, on-line measurements of exhaled NO (eNO) were made using a chemiluminescence technique with a single-breath method. NO-free air was inhaled prior to exhalation against a resistance. NO in orally and nasall...

متن کامل

Endotoxin triggers nuclear factor-kappaB-dependent up-regulation of multiple proinflammatory genes in the diaphragm.

BACKGROUND Sepsis-induced diaphragmatic force loss and failure are associated with an increased exposure of the muscle to proinflammatory mediators. OBJECTIVES Our objectives were to test the hypothesis that force-inhibiting mediators may arise in large part from the diaphragm itself and to evaluate the roles of mechanical stress, free radicals, and the nuclear factor (NF)-kappaB transcriptio...

متن کامل

Apical, but not basolateral, endotoxin preincubation protects alveolar epithelial cells against hydrogen peroxide-induced loss of barrier function: the role of nitric oxide synthesis.

The influence of LPS preincubation on hydrogen peroxide (H(2)O(2))-induced loss of epithelial barrier function was investigated in rat alveolar epithelial type II cells (ATII). Both apical and basolateral H(2)O(2) administration caused a manyfold increase in transepithelial [(3)H]mannitol passage. Apical but not basolateral preincubation of ATII with LPS did not influence control barrier proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anesthesiology

دوره 96 4  شماره 

صفحات  -

تاریخ انتشار 2002